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Creeping flow in two-dimensional networks 

By JOEL KOPLIK 
Schlumberger-Doll Research, P.O. Box 307, 

Ridgefield, Connecticut 06877, U.S.A. 
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We discuss creeping incompressible fluid flow in two-dimensional networks consisting 
of regular lattice arrays of variable-sized channels and junctions. The intended appli- 
cation is to low-Reynolds-number flow in models of porous media. The flow problem 
is reduced to an analogue linear-network problem and is solved by numerical matrix 
inversion. It is found that ‘ effective-medium theory’ provides an excellent approxi- 
mation to flow in such networks. Various qualitative features of such flows are dis- 
cussed, and an elegant general form for the absolute permeability is derived. The 
latter, and the effective-medium approximation, are equally applicable to three- 
dimensional networks. 

1. lntroduction 
The flow of fluids in microscopically disordered porous media is a subject with 

application to a variety of technological areas, such as hydrology, chemical production 
processes, and oil recovery (Bear 1972; Collins 1961; Scheidegger 1974). In  many 
cases, one works with an empirically determined Darcy permeability for the porous 
material in question, but direct measurement is not always practical and does not 
always provide sufficient information. A broader approach is to calculate the per- 
meability from the microscopic geometry of the medium; one is then in a position to 
relate changes in microstructure quantitatively to changes in macroscopic variables. 
A further advantage of calculating from the microscopic level up is that other physical 
processes may be discussed in parallel, and, by the same token, calculational techniques 
originally devised to study other transport processes may be brought to bear on the 
fluid problem. 

Our aim in this paper is to calculate approximately the local velocity and pressure 
fields for creeping flow in a class of network models of porous media. Macroscopic 
flow parameters, such as the permeability, are obtained by averaging the local flow 
field. While most of the specific calculations we present refer to certain two-dimen- 
sional networks, we shall argue that many of our results are quite general, and that 
extension to any two- or three-dimensional network involves no new principles. 

A typical network that we study is shown in figure 1 ;  it consists of a regular lattice 
arrangement of junctions or ‘pores’, connected by channels or ‘throats’. The pores 
and throats are characterized by their radii, with an independent probability distri- 
bution function (p.d.f.) for each, and by the centre-to-centre distance. One can con- 
sider a pseudo-two-dimensional lattice where the pore separations have a p.d.f. as well. 
The lattice is further characterized by its co-ordination number u, the number of 
throats meeting a t  a pore; in the figure CT = 4, and in general u can be a random variable 
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FIQURE 1. Semi-regular network model of a two-dimensional porous medium. 

with its own p.d.f. The network approach to porous media is an old one, surveyed by 
van Brake1 (1975), but we are unaware of any previous effort to include the effects of 
the pores. 

To solve the fluid-flow problem, we break up the network into its constituent pores 
and throats, and match the flow field approximately at  the boundaries. We then 
observe that for each constituent there is a linear relationship between pressure 
difference and fluid flux, so that the fluid problem maps onto an electrical-resistor 
problem (Fatt 1956). We then solve the analogue electrical-network problem by in- 
verting the appropriate conductance matrix and averaging over the p.d.f. of the net- 
work elements. We find that averaging over the random medium can be carried out 
semi-analytically using an effective-medium theory. 

In many porous media, such as oil reservoir rock, the void space is quite irregular and 
convoluted, and bears no obvious resemblance to figure 1. Even if one could determine 
the mathematical function that gives the boundary of the pore space for such a medium, 
it would be hopeless to attempt any calculation in so irregular a region. Fortunately, 
there are systematic ‘ stereological ’ procedures which convert an irregular pore space 
into an approximate semi-regular network (Pratt 1978; Serra 1982). For two-dimen- 
sional media there already exists computer hardware for this purpose, while the three- 
dimensional case is an active research area. Obviously, an approach based on the 
microgeometry of the pore space requires a great deal of input, such as examination of 
scanning electron micrographs, that is not always readily available. However, one can 
instead regard the microscopic description of the porous material as a kind of ‘basis 
set ’ from which one can calculate a variety of physical processes: sound propagation, 
electric conductivity and dielectric response, nuclear-particle transport, etc. One 
may then attempt to correlate the different types vf physical transport, and deduce 
the properties of one type from measurements of another. Such empirical correlations 
are often used in current practice (in the oil-recovery case, the procedure is known as 
well-logging; see e.g. Pirson (1 963)), and further theoretical understanding can only 
improve matters. 

The remainder of this paper is organized as follows. In $2 ,  we compute the flow 
field in a pore as a function of the flux entering or leaving the various throats. By 
matching throat and pore flow only approximately, this calculation can be carried 
out analytically using complex-variable techniques. We indicate how the,patching 
approximation might be improved upon. Section 3 describes the resistor network 
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analogy for computing network flows, and reviews effective-medium theory. Some 
numerical results are presented in § 4; we demonstrate the applicability of the effective- 
medium approximation using a particular simplified p.d.f., and then study the quali- 
tative features of flow in networks, emphasizing the appearance of Darcy's law and 
the interplay of pore and throat sizes. The previous results are used in 9 5 to express 
the permeability ofnetworks, in two or three dimensions, in a convenient and suggestive 
form. In  3 6, we summarize our results and indicate future directions. 

2. Pore Flow 
In this section, we calculate the flow field in the network pores. The basic idea is to 

divide the network into separate pores and throats, and match pressure and velocity 
fields where they join. At low Reynolds number, one has Poiseuille flow in the central 
region of the throats and somewhat different entry and exit flows near the ends, where 
the lengths of the entry and exit regions are of the order of a throat diameter. Ideally, 
one should consider a pore with its adjacent entry and exit regions appended, and use 
as boundary condition a Poiseuille velocity distribution across the throat openings, 
and zero velocity on the solid boundaries of the pores. This procedure leads to rather 
irregular pore regions, and requires a numerical calculation. We have instead used a 
simplifying approximation which yields an analytic solution : we neglect the entry 
and exit regions, regarding the pores as simple circles, but continue to match to a 
Poiseuille velocity field in the openings. In  consequence, the pressures do not exactly 
match a t  the pore-throat boundary. While this simplification is not essential, it is 
unlikely that the pore-space geometry will be known with high precision in most 
applications, and we do not think it worthwhile to be very accurate a t  this point. 

The approximated pore flow problem can now be stated as follows (see figure 2a). 
I n  the two-dimensional region 1x1 < R, solve the Stokes equations 

pv=u = Vp, v .u  = 0, (1)  

with the boundary condition on 1x1 = R that 

[upi (10- Oil < arcsin (ri /R)), \  

1.0 (otherwise). J 
U= 

Here, upi is the appropriate Poiseuille flow for throat i ;  for example 

where Q, and rl  are the flux and radius of throat 1.  Introducing a stream function 

ayP -ayP 

and taking the curl of (1))  we have 
" v4yP = 0,  

(4) 

with boundary conditions on VyP on 1x1 = R. 
We can solve the biharmonic equation for this case in closed form by a complex- 
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FIGURE 2. (a)  Geometry of a pore. ( b )  Detailed geometry near a pore exit. 

variable technique due to Muskhelishvili (1953);T see also Kantorovich & Krilov 
(1 958). Introducing complex co-ordinates 

x+iy - x-iy 
R ”=- R ’  

z=- 

the biharmonic equation ( 5 )  becomes 

t Alternatively one could use Fourier-series methods, as in Mills (1977). I thank a referee 
for bringing this reference t o  my attention. 



Creeping flow in two-dimensional networks 

A general solution of (7 )  is a linear function of 2, which we write in the form 

Y = -a[$(z)+xx(z)]. 

V = v-iu = $(z )+z$ ' ( z )+x ' ( z ) ,  

242) = P(0)  + 4PX$'(Zf. 

I n  terms of the analytic functions $ and x, the velocity is 
- -  

and the pressure is (Langlois 1964) 

The problem is now to find $ and x such that, on 1.1 = 1, V takes the value 

10 (otherwise). I 
We will proceed by integrating (9) around the unit circle; on IzI = I we write 

2 = a = ei@, 

so (9) and its complex conjugate are 
-- 

$(a) + N(4 + X ' ( 4  = vo(o-), 
- 1  
$(a) +;$'W+x'(4 = Mo-b 

We need the following identities, which are valid for IzI < 1 and f ( z )  analytic in 

The first identity is Cauchy's theorem, while the others are easily derived from the 
Taylor-series expansions off (2) and ( 1  - z/a)-l by termwise integration. Now inte- 
grating (12) around the unit circle and making use of (13),  we obtain 

The constants $ ' ( O ) ,  $"(O)  and ~'(0) may be obtained from the low-order Fourier 
coefficients of 6. We expand 

m 

&(a) = I: uneinu, (15) 
n = - w  
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and insert the Taylor-series expansions for Q, and x into (12), taking advantage of the 
arbitrariness in the definition (4) to set Q(0) = 0. Comparing powers of v, we find 

$'(O) = $al, $"(O) = 2a2, ~ ' ( 0 )  = a,-2a2. (16) 

It is in fact possible to solve for g5 and x term by term by this procedure, providing an 
independent derivation of (14). 

In  the equations (14), the right-hand side is known from K(v), the constants are 
given in terms of V, by (15) and (16), so the first equation gives g5(z), the second then 
gives ~ ' ( z ) ,  and the problem is solved. ( ~ ( 0 )  is undetermined and irrelevant.) If the 
pore has a more-complicated shape that can be conformally mapped into a circle, 
then Muskhelishvili's method gives $ and x as the solution of a coupled pair of 
Fredholm integral equations. 

I n  practice, the explicit solution obtained by inserting (1  1)  into (14) is fairly corn- 
plicated : 

where the sum runs over entries and exits i ,  a,L = r{ /€ l ,  and 

(18) 

and ~ ' ( z )  is given by a similar expression. Several qualitative features of this solution 
may be noted. 

Superposition. g5 and x receive independent, additive contributions from all parts 
of the unit circle. Given two flows, each with its set of entry and exit throats and each 
conserving mass, one can contact a new flow field by adding $ and x (or u and p )  
locally. In particular, any flow may be regarded as a sum of 'two-port' flows, each 
with one entry and one exit throat. These statements are exact only when we neglect 
entry and exit regions for the throats, but should hold approximately in general. 

Linearity. From ( 1  7 )  we can represent the potentials schematically as a sum over 
contributions from each port: 

$ ( x ) ,  ~ ' ( 2 )  N 2 Qi lp ( z ) .  (19) 
i 

We have extracted the flux Qi, so the remaining factor FL(z) depends purely on the 
geometry of the pore. The pressure and velocity fields are linear in $ and x and have 
a similar schematic representation. The relative pressure a t  the centre of port j, 

p .  - = p(x = ei$) -p(O),  (20) 

has from (10) and (19) the form 
Pj = 2 y . k Q k .  

i 

The %.k above are obtained by manipulation and evaluation of the previous expressions 
and have the form of viscosity times a function of pore and throat geometry (see below). 
The form (2 1 )  is a general consequence of the Stokes equations and the 'factorization' 
of the flows in separate pores induced by the connecting throats, and is valid for pores 
of any shape and dimension. 
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Qualitative z dependence. The functions E(z) in (19) are of the form 

(see figure 2 b ) ,  so each l$ tends to decrease with distance from its respective port i. 
For the pressure we have 

each term of which decreases rapidly away from its respective port. Hence for pi, the 
relative pressure a t  the centre of port j, the dominant contribution comes from that 
term corresponding to p o r t j  itself, and (21) simplifies to 

pi 2 T.iQi. 
Using the explicit expressions above to evaluate y.j, we find 

] Qi, a5 arcsin a j  
p j  2: &z [ai + arcsin ai + 

l-(l-a;)$ 

(recall ai = r j / R ) .  By comparison with the direct numerical evaluation of (17 )  and 
(18) we find that (24) is accurate to a t  worst a few per cent when the throats are well- 
separated. The greatest discrepancy occurs for a pore with two diametrically opposite 
ports of aj = 1 - a section of straight channel - where (24) overestimates the pressure 
difference by a multiplicative factor 1 + l/n. The complete expression (21) is, however, 
exact in this limit. 

The approximate expression (24 b )  may be simplified further by observing (numeric- 
ally) that the quantity in brackets is approximately equal to  4aj, to an accuracy of a 
few per cent, over the entire range of a. We then have 

an expression independent of the pore radius R. Thus the pressure drop between port 
j and the centre of the pore is approximately the same as the pressure drop over an 
additional length 4rj/7r of throat. 

Singularities. By construction, the velocity is continuous across the curve IzI = 1 
where pore and throat join. However, in figure 2 ( b ) ,  for example, the velocity is en- 
tirely along the x-axis in the throat to the right, but has both x- and y-components in 
the pore to the left. The velocity gradients then have jump discontinuities across 
IzI = 1, and the Stokes equation implies that, the pressure will have a discontinuity as 
well. As the corner is approached, a logarithmic singularity develops. Using the sche- 
matic form (22), as x -+ a+ (the upper corner) the part of the integral near a+ dominates; 
V, vanishes linearly there because the corner is part of the solid boundary of the void 
space, so 

q5(z)-+J da- +regular = ( z  - a+) log ( z  - a+) +regular. (25) 
u+ a-a+ 

z+r+ a - z  

+(z)  is thus finite a t  a+, but p N 9 # ' ( z ) ,  so 

p ( z )  --+ log (z  - a+) +regular. 
z+u+ 
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FIGURE 3. Computed interior velocity field in the first quadrant for 
flow in a pore with two opposite ports of radii r /R  = 0.1. 
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FIGURE 4. Pressure field near the exit of a pore with two opposite ports of 
radii r / R  = 0.1. 
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1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 
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-1.0 -0.8 -0.6 -0.4 -0-2 0 0.2 0.4 0.6 0.8 1.0 
X 

FIGURE 5. The pressure field in a pore with two ports of radius r / R  = 0.1 
and entrance at  180", with the exit at, (a )  0" and ( b )  135". 
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FIGURE 6. Pressure field in a pore with two ports of radius r / R  = 0.5,  
with the exit at (a) O", and (b) 90". 
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-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 
X 

FIGURE 7. A pore with an entry port of relative radius r / R  = 0.2 at 180", 
and an exit of radius 0.4 oriented at 45". 

If the sharp corner a t  u+ were rounded off, then &(u) would vanish quadratically 
there and p(a+)  would be finite. Had we matched pores and throats more accurately, 
a power singularity would be expected a t  a sharp corner (Moffatt 1964). 

Finally, we display some examples of the resulting p and u fields inside a pore. In  
figures 3 and 4, we consider a pore of unit radius with an entry port a t  8, = 180" and 
an exit port a t  8, = 0", both with r/R = 0.1. The velocity field in the first quadrant 
is shown in figure 3, where the orientation and length of the arrows give the direction 
and relative magnitude of u a t  evenly spaced grid points. The pressure field near the 
exit is shown in figure 4; the units are arbitrary, withp = 0 a t  the origin andp = - 63.5 
a t  the centre of the exit. The fields in the other quadrants follow by symmetry. Note 
that, as argued qualitatively above, the pressure is approximately zero outside the 
exit (and entry) regions. To emphasize this point, as well as to indicate the independence 
of different ports, in figure 5 we show the full pressure field in the full unit circle as 
the orientation of the exit port varies from 0" (figure 5a)  to 135" (figure 5 b ) .  As the 
radii of the ports increase, the region over which the pressure field is appreciably 
non-zero extends further into the pore's interior. In figure 6, we consider ports of 
radius 0.5 with an entry a t  180" and exits first a t  0" (figure 6a) ,  and then a t  90" 
(figure 6b). Lastly, we display in figure 7 the pressure field for an unsymmetric example, 
with an entry port of radius 0.2 at 180" and an exit port of radius 0.4 a t  45". 

In  the remainder of this paper we match the flow fields a t  the pore-throat boundary 
by identifying the pressures a t  the centre of the boundary line, using (20) as the 
definition of the pressure drop across a pore. Our rationale for this choice is that the 
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flow along the centre line of the throat would be a t  least affected by an improved 
matching procedure. 

3. Analogue resistor network 
In the flow network of figure I, consider any two neighbouring pores a and b, and 

their connecting throat. The pressure difference between the two pore centres is the 
sum of two pore-pressure differences and a throat-pressure difference : 

APab = pa+Pt+pb* 

Using the approximation (23) for the pores and the (two-dimensional) Poiseuille 
result €or the throat 

we can write 

Furthermore, the fluid is incompressible and flux is conserved at each pore: 

2 Qab = 0, 
a 4  

(29) 

where the sum is over all pores a connected directly to b. The two equations (28) and 
(29) are formally identical to the equations of an electrical-resistor network (Fatt 1956; 
Dullien 1979) with the correspondence 

(30) 1 
pressure o voltage, 

fluid flux o electric current, 

gab e electrical conductance, 

and we may solve them by the same methods. Inserting (28) into (29), we have 

where we have allowed for a possible external fluid source 8,. In practice, 8, will be 
non-zero only at  the boundaries of the network. The last equation may be rearranged 

(32) 
in matrix form as 

G.P=S,  

where P = (p,,,p,, ...,p,)T is a vector of pore (-centre) pressures, similarly for S, and 
the ' conductance matrix ' G is 

Had we retained the more-general form (21) for the pore pressures, we would still 
obtain (32) but with a more complicated conductance matrix involving neighbouring 
throats. 

The problem is now to invert the conductance matrix G.  We are particularly in- 
terested in the case where internal pore and throat dimensions vary according to some 
probability distributions, so it will be necessary to repeat the inversion with different 
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FIUTJRE 8. Determining the EMT conductance. 

realizations of the probability distribution, and then average. Some numerical results 
appear in $4. 

A common approximation in the physics of microscopically disordered media is 
‘effective-medium theory’ (EMT), in which one seeks to replace random microscopic 
parameters with a certain mean value, chosen so that the mean field produced by the 
random parameters is the same as that produced when all parameters have this mean 
value. Approximations of this sort have been applied with considerable success to a 
variety of problems in solid-state physics (see e.g. Ziman 1979), and a version of EMT 
appropriate to random networks has been given by Kirkpatrick (1973). We shall see 
in $ 4  that network EMT does quite well, so we digress here to review Kirkpatrick’s 
derivation. We shall use electrical terminology, but with the correspondence (30) 
similar statements apply for fluid networks. 

Suppose we have an infinite resistor network of co-ordination number g, with 
individual bond conductances gab, and we wish to choose a mean EMT conductance 
g, in such a way that the mean conductances reproduce the average local field. If in 
the EMT network one conductance reverts from gm back to its original value gab, 
there will be an excess current in that resistor of 

Ar = (gm-gab)vm’ 

where V, is the potential difference between nodes in the mean network (see figure 8). 
The excess current produces an excess voltage 

where yAb is the conductance of the rest of the network between the end points of gab. 

To find YAb,  observe that, if gab were replaced by g,, then g, and y,& in parallel would 
give the node-to-node conductance yab of the EMT network: 

Yab = YAb+grn* 

yab is relatively easy to calculate : by definition of node-to-node conductance, if current 
I enters node a and leaves node b producing potential difference Eb, then yab = I /&.  
However, this situation is the linear superposition of current I entering node tz and 
leaking out a t  infinity, and current I leaking in at  infinity and exiting node b. In  the 
former case, current I / c  is present in all resistors leading out of a,  including ab, so 
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&, = I/ug,. In  the latter case, the same current and the same voltage drop occur in 
ab, so adding we have 

1 2I 
K b = - -  

gm ' 

This gives yab, which gives Y&, which gives 

The value of gab and hence of AEb is a random variable, and we require that the average 
of AKb with respect to the probability distribution p(g,b) vanish: 

The EMT conductance gm is chosen so that (34) is satisfied. 

with the property 

The lower bound on g,(a) corresponds to  conductors in series, while the upper bound 
corresponds to conductors in parallel, and the inequality states that an interconnected 
network is somewhere in between. 

The argument just given does not make explicit the circumstances under which the 
EMT approximation should be valid. We have studied this question in detail in 
another publication (Koplik 1981), for the case of completely uncorrelated local con- 
ductances. We find that the essential requirement for EMT to perform well is that the 
conductance probability distribution be 'non-critical ', not strongly weighted near 
g = 0 and, more specifically, that the system not be near the conduction threshold. 
When this condiction is not met, one may instead take direct advantage of the fact 
that  the system is near a critical point and make use of scaling relations, the renor- 
malization group, and other methods used for phase transitions. While we do not 
pursue this case further here, discussions of the analogous electrical-conductivity 
problem are given by Kirkpatrick (1  973) m d  articles by Kirkpatrick, Lubensky, and 
Thouless in Balian, Maynard & Toulouse (1979). 

It is easy to show from (34) that gm(u) is a monotonically increasing function of g, 

gm(2) = (g-')-' G gm(u) Q (9) = gm(a)- 

4. Numerical results 
4.1. Procedure 

We solve the network equations (32) and (33) numerically by the following method. 
A flow configuration is chosen, usually that shown in figure 9 where we assign pressure 
p ,  to all nodes on the left boundary of the network, pressure pR < p ,  on the right 
boundary, and periodic boundary conditions on the remaining sides, so the average 
flow is from left to right. With this choice, the source vector S has the form 

i g,, p ,  (a  E left boundary), 

s, = gRa pIz  (a  E right boundary), i, (otherwise), 

(35) 
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__t Flow 

Periodic 

FIGURE 9. Standard flow configuration for determining network conductances. 

where the random conductances gLa and gRa appear in the appropriate diagonal 
elements of G as well. Normally one chooses periodic boundary conditions to minimize 
finite-sample-size effects, but we shall see that no-flow boundary conditions on the 
sides give virtually identical results. 

A set of pore and throat radii and throat lengths are chosen according to their 
respective probability distributions, the conductances gab are computed, and the 
conductance matrix G is constructed. Equation (32) is solved for P, using a commer- 
cially available linear-algebra package, and the total flux Q is computed as 

The sum in (36) runs over the left boundary of the network. The procedure is repeated 
with a new set of throat radii, etc., and we compute average pore pressures (P) and 
an average total fluid flux (Q). 

4.2. Comparison with ejjeective-medium theory 

I n  this and the following subsection, we study those features of network flow that 
depend only on the conductances gab having a probability distribution, postponing the 
comparison of different distributions to $4.3. We have arbitrarily selected the uniform 
conductance distribution 

(& (1 6 gab 'Ooo),\ 

= 1 o (otherwise) J (37) 

as illustrative of broad distributions. It is intuitively reasonable that any peaked 
distribution with the same endpoints or any narrower uniform distribution can only 
improve the accuracy of an averaging procedure, while in another publication (Koplik 
1981) we show that any broadening of the distribution will not alter our conclusions. 
It is essential, however, that the conductance distribution not correspond to a system 
near the conduction threshold @ ( g a b )  largest near gab = 0), where mean-field approxi- 
mations are invalid. I n  figure 10, we show the various lattices we have studied 
numerically. Note that, aside from variation in co-ordination number, we have allowed 
for variation in spatial dimension (trigonal vs. cubic), and in topology beyond co- 
ordination number (square vs. KagomB). 
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Hexagonal 

Trigonal 

Square 

Cubic 

Kagome‘ 

Crossed square 

FIGURE 10. Lattices studied in this work. 

The comparison of numerical results with EMT is simplest in terms of an ‘effective 
conductance ’, geff. We first compute an overall network conductance 

which is related to the permeability of the network by factors depending on the overall 
geometry, but not the details of the conductance distribution (see $ 5 ) .  We then 
compute K with all conductances set to one, and define 

If all internal conductances were set equal to gein the network conductance K({gab}) 
would be reproduced, and to  the extent that EMT is valid we expect geff = g,. I n  
table 1, we compare gent with gm for the various lattices studied, where in all cases we 
have averaged over 100 runs on a lattice of the order of 100 pores. The agreement is 
well within the statistical standard deviation in each case, and the variation of the 
mean numerical value is just as expected from EMT. Beyond this ‘global agreement ’, 
we shall see presently that EMT provides an excellent approximation even to average 
individual pore pressures. 

The last column in table 1 gives the effective conductance of networks where the 
co-ordination number does not have a precise value but a probability distribution. We 
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Lattice srn(a) S e r t ( 4  ged((m 
1862 f 205 Hexagonal 1752 1786+ 187 

Kagom6 1991 2000 f 189 - 
Square 1991 2002 f 147 2044 146 
Trigonal 2186 2206 f 130 2212 f 145 
Cubic 2186 2182 f 99 - 
Crossed square 2272 2280 83 - 

TABLE 1. Comparison of EMT conductances g ,  to numerical average conductances serf 
for various lattices, with conductance p.d.f. (37) 

begin with the B = 8 crossed-square network shown in figure 10, and randomly set 
throat radii to zero with probability (1  - Q ( B ) ) .  The probability of k throats remaining 
open is then 

1, we have a binomial distribution with mean (a). For the cases studied in table 
gen((a)) N g,({B)). In  microscopically disordered porous media, there is likely to be 
a distribution of co-ordination numbers rather than a single fixed value, so this result 
is of some practical importance. 

4.3. Qualitative flow features 

I n  figures 11-13, we display the variation of network conductance K with network 
size, for a square B = 4 lattice. To the extent that the random conductances are well 
represented by a single effective conductance, we expect 

(40) 
N, K = geii - ( B  = 4), 4, 

where N;I and Nl are the number of lattice links along and orthogonal to the flow 
direction, respectively, and from the results of 8 4.2 geff N g,. The numerical results 
in figures 1 1  and 12 give a length and width dependence quite in accord with (40), 
even for surprisingly small lattices. More generally, for overalI-square nehworks 
(4, = NL = N ) ,  figure 13 shows no significant size dependence once N > 3. The second 
set of points in figure 13 are the analogous results for networks with a no-flow boun- 
dary condition on the sides; for N > 6 there is no systematic difference between no- 
flow and periodic boundaries. Similar results are obtained for the other lattices in 
figure 10. We conclude that averaging of a random conductance distribution - 
replacing random local conductances by a single (EMT) averege value - is valid to 
an accuracy of order 1 % when the network’s linear dimensions exceed several lattice 
units. 

In  the same vein, we show in figure 14 the variation of average pressure with dis- 
tance along the flow for an N = 10 square lattice. The pressure is a linearly decreasing 
function of distance in the flow direction, as it must be if EMT averaging is valid. 
This result is a kind of demonstration of Darcy’s law: to the extent that one can 
divide the pore space of a porous medium into connected microscopic units in each of 
which pressure difference is proportional to flux as in (28), the validity of EMT ensures 
a Iinear constant average pressure gradient and a linear proportionality between 
overall pressure difference and total fluid flux. 
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FIGURE 11. Length dependence of the network conductance. 
The arrow indicates the effective-medium value. 
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In  figure 15, we display the average pore pressures for an irregular flow geometry. 
The figure shows a square 10 x 10 lattice with fluid entering one pore on the left from 
a reservoir a t  pressure 100 and exiting one (displaced) pore on the right into a reservoir 
at pressure 0. The pore pressures averaged over 100 runs for this flow configuration, 
together with the corresponding pore pressures obtained by using g ,  everywhere, 
are given in table 2. (The numbers in table 2 are to be associated with the nodes in 
figure 15.) The agreement is well within the statistical errors,.which are ca. 5 yo. An 
interesting feature of this flow configuration is the insensitivity of the network con- 
ductance to the precise location of the exit pore: as the position of the exit pore 
varies all along the right boundary of the lattice, the variation in K is a t  most 1 yo. (In 
terms of our electrical analogy (30), this behaviour explains why electrical appliances 
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(a) 100 74.99 
66.58 
61.70 
59.21 
57.98 
57.55 
57.92 
59.13 
61.50 
65.70 

(b) 100 74.50 
66.51 
62.27 
59.88 
58.64 
58.26 
58.66 
59.92 
62.31 
66.53 

~ 

64.60 
62.27 
59.93 
58.14 
57.15 
56.76 
57.07 
58.1 1 
59.89 
62.42 

64.98 
62.75 
60.42 
58.74 
57.77 
57.47 
57.80 
58.79 
60.47 
61-78 

59.43 
58.58 
57.33 
56.29 
55.60 
55.39 
55.69 
56.42 
57.58 
58.64 

59.86 
59.10 
57.92 
56.89 
56.24 
56.04 
56.30 
56.98 
58.00 
59.16 

~ 

55.64 
55.26 
54-70 
54-02 
53.62 
53.56 
53.76 
54.29 
54.90 
55.46 

56.22 
55.88 
55.25 
54.65 
54.26 
54.17 
54.36 
54.81 
55.41 
55.98 

52.66 
52.59 
52.06 
51.59 
51.49 
51.47 
51.63 
52.01 
52.31 
52.71 

53.17 
52.94 
52.56 
52.20 
52.00 
51-99 
52.18 
52.49 
52.84 
53.11 

49.75 
49.55 
49.30 
49-06 
49.13 
49.28 
49.43 
49.54 
49.79 
49.86 

50.40 
50.16 
49.84 
49-60 
49.53 
49.64 
49.86 
50.14 
50.36 
50.47 

47-29 
46.93 
46.60 
46.35 
46.37 
46.64 
47.03 
47.30 
47.47 
47.54 

47.80 
47.44 
47.06 
46.83 
46.89 
47.16 
47.51 
47.82 
48.01 
48.00 

44.82 
44.18 
43.31 
43.30 
43.28 
43.86 
44.56 
45.11 
45.27 
45.19 

45.35 
44.75 
44.12 
43.78 
44.02 
44.59 
44.19 
45.64 
45.83 
45.74 

42.57 
41.29 
40.07 
38.96 
39.96 
41.37 
42.37 
43.14 
43.36 
43.12 

43.11 
42.08 
40.90 
40.14 
40.84 
42.00 
43-02 
43.70 
43.96 
43.76 

40.63 
38.87 
36.36 
33.91 
36.24 
38.89 
40.58 
41.69 
42.02 
41.63 

41.26 
39.58 
37.25 
35.02 
37.22 
39.53 
41.21 
42.20 
42.53 
42.23 

39.37 
37.05 
32.69 
25.01 0 
32.52 
37.35 
39.62 
40.99 
41.31 
40.86 

40.12 
37.73 
33.49 
25.50 0 
33.47 
37.69 
40.08 
41.34 
41.74 
41.36 

TABLE 2. Pore pressures for the unsymmetric flow configuration shown in figure 5: 
(a) averaged over 100 runs for the uniform-conductance p.d.f. ; (b)  computed via EMT 

out 

X 

FIGURE 16. An electrical analogy to the flow problem of figure 15. 

work as well as they do despite incompetent construction). More generally, in a 
lattice with NL < q,, we find little variation of K with exit pore position until the 
vertical displacement relative to the entry is 2-3 times 4,. In contrast, as the exit 
pore shifts, the internal pressure field changs greatly, roughly speaking because the 
average pressure gradient continuously changes direction to be along the line joining 
entry and exit. As this happens, the distance between entry and exit increases, so the 
' V p  lines' (analogous to electric field lines) spread out to maintain a constant network 
conductance. 

We can illuminate the above behaviour somewhat by considering a continuum 
electrical analogy: consider an infinite conducting strip with current f inserted in a 
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localized region along one boundary and extracted from an adjustable localized region 
on the other boundary. (See figure 16.) One seeks an electrostatic potential #(x) 
satisfying the Laplace equation 

in the strip, with boundary conditions on the current density j = aE = - aV$: 

V2$ = 0 

jz(0, Y) = AIYY), J.& y) = I f ( y -  W ) .  

Heref(y) is a function localized near y = 0 with unit integral. One finds 

$(x) = $(O) +'Im 4nu - m k dkf(k)  sinh kL 

where f is the Fourier transform off. A convenient choice is 

for E Q L, for which the potential difference between entry and exit point is 

Indeed, the scale of variation of A# with W is L, and for sufficiently small EIL the 
variation is negligible until W / L  1. 

4.4. Distribution dependence 

We now study the variation of network conductance with changes in the size distri- 
butions of pores and throats. We shall discuss the square lattice in some detail; the 
others behave in a qualitatively similar manner except that, as EMT predicts, the 
sensitivity of network conductance to the width of the distribution decreases with v 
(cf. table 1). We use the standard flow configuration of figure 9, a square lattice with 
10 throats in either direction. It is convenient to  consider a 'reference distribution' 
of pore and throat sizes, with R = 50 ,urn, r = 25 ,um and 1 = 50 pm, and refer other 
distributions to it. For this set of values one finds from (27) and (28) a throat conduct- 
ance of 208 ,urn2, a pore conductance of 326 ,urn2, and a centre-to-centre conductance 
gab(reference) = 91.63,um2. In $5 we show that, for this lattice gab,  the network 
conductance, and the Darcy permeability are identical. The selection of the reference 
and other distributions was made to coincide roughly with the actual dimensions of 
etched-glass plates now being employed in experimental studies of fiow in two- 
dimensional networks by Chandler (1981). 

As remarked a t  the end of $ 2, the pore radius R is numerically irrelevant in W,, 
and hence in gab. However, the overall dimensions of the network are determined by 
the distance between pore centres, from which the throat lengths are given by sub- 
tracting two pore radii. The numerical results that follow are stated a p  a function of 
the throat-radius and throat-length distributions. 

The first issue we address is the effect of shape and width of the distributions about 
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their mean values. We compare three kinds of distributions of a variable x: delta- 
function, Gaussian and uniform: 

S(x,): p ( x )  = S(x-x,); 

U(a ,  b )  : J 
Within the second class, we distinguish sharp Gaussian (SG) with a ( b  - a)-1 = 0.1 
and broad Gaussian (BG) with cr(b-a)-l = 0.2. The first set of entries in table 3 
compare various broadenings of the reference distribution. The SG distribution is 
essentially indistinguishable from a delta function, while in the other cases the net- 
work conductance decreases with increasing width. This behaviour is understandable 
from the point of view of EMT, where the averaging in (34) emphasizes the lower part 
of t h j  conductance p.d.f., as well as from the inequality below (34). 

We illustrate the resulting p.d.f.s of network conductances gab in figure 17 for three 
cases, corresponding to entries 13, 14 and 15 in table 3. I n  all cases, the result is a 
peaked curve skewed towards the lower end. The latter property originates in gab 
being, roughly, the square of a symmetrically distributed variable. While the distri- 
butions studied here may not correspond precisely to the pore spaces of actual porous 
media, we do expect realistic conductances to have the general shapes shown in 
figure 17.  

We now compare the conductance of the reference distributions to that of distri- 
butions of various average throat radii and lengths. A selection of numerical results is 
given in the second group of entries in table 3. The general trend of the variation is 
as expected from (24), (27) and (28) : conductance increases roughly quadratically with 
throat radius, decreases roughly as (const. + Z)-l with throat length, and is independent 
of pore radius. 

We have checked, in a few cases, the EMT conductance against the numerical 
results in table 3, and found agreement comparable to that in table 1. Going beyond the 
particular cases studied and approximations in this paper, there are two potential 
problems for EMT. If the conductance p.d.f., unlike those in 3gnre 17, is heavily 
weighted near conductance zero (arising, say, from a significant number of very long 
and narrow throats) the corrections to EMT may be large. In  this case, direct numerical 
solution or the use of critical-pcint scaling relations (Kirkpatrick 1973) is suggested. 
A second source of difficulty is the existence of correlations between network elements. 
I f  the individual network conductances are not statistically independent the EMT 
connections are again expected to be larger than we have seen here. There is a formal 
correlation present in the general expression ( 2 4 a )  for the pore pressures, in that a 
given pore’s radius effects the pressure drop in any ogthe throats to which it connects. 
However, in the approximate form ( 2 4 c ) ,  the pore radius drop out and the correlation 
disappears. In general, the pores will induce some correlation between neighbouring 
throats and the EMT approximation may not work quite as well. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

16 
17  
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

P(rJ P ( 0  P(%) K (ym2) 
W 5 )  S(50) f3(50) 91.63 
SG(15, 35) &50) 6(50) 91.21 f 0.20 
BG(20, 30) (850) &50) 90.82 & 1.75 
BG( 15, 35) 450) S(50) 88.67 & 3.49 
U(20, 30) S(50) 450)  90.13 zt: 2.60 
U(15, 35) 450)  S(50) 85.69 f 5.19 
U(  10, 40) S(50) S(50) 79.05f 7.71 
S(25) SG(40, 60) &50) 91.65f0.16 
@5) SG(30, 70) S(50) 91.70 f 0.33 
S(25) SG(20, 80) 6(50) 91.79 & 0.49 
425)  S(50) U(40, 60) 91.63 f 0.01 
&25) S(50) U(30, 70) 91.61 f0 .05  

4 5 0 )  89.99 f 2.48 U(20, 30) U(40, 60) 
BG(20, 30) BG(40, 60) S(50) 90.83 & 1.72 
BG( 10, 40) BG(25, 75) &50) 85.69 f 5.10 

6(5 )  6( 200) S(50) 0.392 

S(12.5) S(200) 450)  5.62 
U( 10, 15) S(200) S(50) 5.52 f 0.19 
U(5, 20) s(2oo) &50) 4.82 0.55 
U(45, 55) 6(200) S(501 365-1 f 5.2 
U(35, 65) S(200) J(50) 353.0 f 15.6 
W 5 )  S(l00) S(50) 63.65 
W 5 )  U(50, 150) &50) 64.72 f 1.09 
W 5 )  U(10, 190) 4 5 0 )  67.34f 2.12 
W 5 )  U(175, 225) S(50) 39.58 f 0.21 
425) U( 150, 250) S(50) 39.77 f 0.41 
W 5 )  U( 100, 300) &50) 40.55 zt: 0.85 

450)  0.296 2 0.059 U(0.5, 9.5) S( 200) 

TABLE 3. Network conductance of a 9 x 10, c = 4 lattice for various 
pore and throat p.d.f.s 

0 100 200 300 

g(pm* 1 
FIGURE 17. Conductance distributions obtained from the throat-size 

distributions 13-15 in table 3. 
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5.  Permeability 
In this section, we use our results on EMT and network conductances to express the 

Darcy permeability of flow networks in a convenient form. Aside from its being the 
conventional parameter to describe flow in porous media, the permeability will be 
seen to have the desirable features, not shared by the network conductance, of being 
an intensive and rotationally invariant quantity. 

We first consider the square lattice with r~ = 4. Once the network has a t  least several 
lattice units in each direction, we know from 8 4 that  the random local conductances 
gab may be replaced by the EMT average conductance g,(4). If we apply an external 
pressure gradient to such a network along one of the lattice axes as in figure 18, then 
the pattern of fluid flow in the network is as shown in the figure. The total flux and 
overall pressure difference are 

P AP = Nx- 
g m ( 4 ) ’  

Q = N,q, 

so from (38) the network conductance is 
NY K J 4 )  = gm(4)- - .  NX 

I n  these equations, N, and N, are the total number of lattice cells in the x- and y- 
directions, and we have assumed N,, N, B 1.  I n  all of this section, we deal with 
lattices satisfying the latter constraint, so that end-effects may be neglected; since 
the permeability is inherently a macroscopic quantity this is no real limitation. Note 
also that the details of the pore space are all subsumed into g,, so figure 18 is a sche- 
matic representation of figure 1 .  The permeability is defined by 

u = -kVp, (42) 

in units where viscosity = I ,  and where macroscopic average pressure and velocity 
are understood. For the uniform flow field in figure 18, 

IuI = Q / W ,  IVPI = AP/L, 
where M7 and L are the physical width and length of the network, so that 

L 
KX(4) iq. Q L  

AP w kx(4) = -- = 

For a symmetric square lattice of side 1, L = lNx and W = lNv, so 

kx(4t = gm14).  

Unlike K,, k, is an intensive quantity, and, as this argument would be identical up to 
the interchanges x t t y  and L-  W if we considered flow in t’he y-direction, Ic, = kz, 
and the permeability is isotropic as well. Note that we obtain an isotropic permeability 
because we have assumed that the underlying lattice is statistically isotropic. If the 
average flow is not along a lattice axis we may decompose it into x- and y-components 
and use superposition. 

For the hexagonal lattice ( r ~  = 3) of figure 19(a), we proceed similarly. For flow in 
the x-direction with identical conductances g,(3), we have the flux pattern shown and 
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9 4 
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0 0 
9 

0 0 
9 

4 

- VP 

FIGURE 18. Flow patterns in the EMT averaged square lattice. 

(Q ) (6) 

FIGURE 19. Flow patterns in the EMT averaged hexagonal lattice, for 
two directions of applied pressure gradient. 

Here, Nx and N, are the number of hexagons in the x- and y-directions, and the addi- 
tional factor of 2 in Ap arises because two links are traversed per hexagon. The lattice 
length and width are 

where 1 is the length of a side, and hence 

L = 3&1N,, W = $INy, 

N, Kx(3) = Bgrn(3)-3 
Nz 

kx(3)  = (+)'grn(3)* 

For flow in the y-direction, the pattern of flux is shown in figure 19(b), for which now 

(In this case, three links are traversed for every two hexagons.) L and W are now 
interchanged from their previous values, and we find 

~ , ( 3 )  = ggrn(3) 3, k ~ 3 )  = (+ ) 'gm(3) .  
N, 

As advertised, the permeability is intensive and isotropic. 

10, and in all cases we find the permeability to be given by 
Identical reasoning applies to each of the two-dimensional lattices L shown in figure 

k,(L) = gm(u) t,(L) (two-dimensional), (43 )  
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Lattice t m  h(-Ql$2(sq.) 

Hexagonal 216 21* 
214 Kagom6 21* 

Square 1 
213 Trigonal 4 3  

Crossed square 3 

1 

1 + 4 2  2: 2-41 

TABLE 4. Geometrical weights and relative porosity (without distinct pores) 
for two-dimensional networks 

FIGURE 20. The pore space in the absence of distinct pores. 

where the numerical factor t,(L), of geometrical origin, has the values shown in table 4. 
As above, the permeability is isotropic if the lattice is.? 

The geometrical weighting factor t,(L) is closely related to the porosity of the net- 
work, the ratio of void space to total area. The relationship is especially close in one 
limiting case: suppose the pore space consists entirely of narrow straight channels 
without district pores, as in figure 10 for the square-lattice case. If the average channel 
radius is r < I, the porosity is given by 

r(Z-2r) 4r 
$,(square) = 4- - - 

t 2  - t  (no pores). 

Repeating this calculation for the other two-dimensional lattices studied, we find the 
third column in table 4. To good accuracy (perhaps excepting the crossed-square 
lattice which is not quite two-dimensional anyway), we find 

t,(L) = $,(L)/$,(square) (no pores). (44) 

In general, with distinct pores present, the correspondence is not so close, but the 
increase in t2(L) found upon descending table 4 will be paralleled by an increase in 
porosity. 

For three-dimensional lattices the same reasoning applies. The effect of random 
network size parameters is to produce random pore-to-pore conductances, which may 

t The electrical analogy in (30) can be reversed, and (43) may be regarded as giving the con- 
tinuum electrical conductivity k of a macroscopic regular network in terms of the EMT electrical 
conductance of the network elements. 
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Lattice U t 3 W )  #3(-5)lY53(SC) 

a J 3  Diamond 4 $ 4 3  
Simple cubic 6 1 
Body-centred cubic 8 4 3  4 3  
Face-centred cubic 12 2 4 2  2 J2 
Hexagonal close-packed 12 242 242 

1 

Filled body-centred cubic? 16 4 4 3  2: 2.60 g+ J3 2: 2.48 

t This refers to a lattice formed by superposing simple and body-centred cubic, or including 
the cube axes in the body-centred structure. 

TABLE 5. Geometrical weights and porosity (without distinct pores) for 
three-dimensional networks 

be replaced by an EMT average conductance g,(a). While we have checked this 
statement explicitly only for the cubic lattice, one generally expects mean-field 
approximations such as EMT to perform better in higher spatial dimension (Domb & 
Green 1976; Koplik 1981). Note that, if the lattice includes distinct pores, the three- 
dimensional analogue of the calculation in $ 2  is required. Once g,(a) is known, the 
permeability follows by simple geometric reasoning as above. For example, for a cubic 
lattice with flow in the x-direction we have 

The lattice length is L = Nxl, while instead of the width we consider the cross-sec- 
tional area A = Nu N,P. The permeability is 

k(cubic) = 9 -' = gm(6)/1. A T  0 
The factor 1, the unit cell size, appears because a three-dimensional fluid conductance 
has dimension (length)3 while, in two or three dimensions, permeability has dimension 
(length),. We have evaluated k for several other lattices, obtaining 

k( L)  = gm( r) t , (L)/l  (three-dimensional), (45) 

where t ,  is given in table 5 and 1 is the nearest-neighbour separation. Once again, the 
variation of t3(L) with lattice is related to variation in porosity: for lattices without 
distinct pores the porosity $,(L) is given in the third column of table 5. The correlation 
between t, and q53 is just as close as that between t ,  and $2, with the only discrepancy 
occurring for an irregular lattice. 

Suppose that instead of a semi-regular network, where the pore centres lie on a 
regular lattice, we had considered a truly random model porous medium. We would 
then have to consider a distribution of centre-to-centre distances and co-ordination 
numbers, but we have seen in $ 4.2 that these features are reasonably well accounted 
for by EMT. We might also consider a number of different possible pore and throat 
shapes; but these again would be handled by effective-medium averaging. The essen- 
tial requirement for the applicability of the methods of this paper is the 'factorization' 
of the porous medium into discrete elements for which the pressure drop is proportional 
to the fluid flux with a known (geometrical) coefficient. 
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Since g,(a) is a relatively slowly varying function of Q (roughly logarithmic, cf. 
table l), most of the lattice-to-lattice variation of k ( L )  will arise from t(L). If we 
attempt to compare the permeabilities of various real porous media, in general there 
will be differences both in the lattice used to represent the topology and in the micro- 
sopic size distributions of the individual lattice elements. To the extent that the latter 
are the same, we conclude that permeability is roughly proportional to t(L), and hence 
to porosity. More generally, we see from (24), (27) and (28) that g ,  oc D2, where D is 
some characteristic microscopic size parameter of the porous medium, so an approxi- 
mate form of (43) is 

Relations of this form are of long-standing use in the petroleum industry to describe 
the permeability of oil reservoirs (Leverett 1938). While the loose argument just 
presented is not a derivation, (46) is quite consistent with the ideas in this paper. 

In  some older approaches to the permeability of porous media, one thinks of the 
pore space as composed of winding channels of some suitable average radius. One then 
has Poiseuille flow locally, and the permeability differs from that of a simple straight 
tube by a ' tortuosity ' factor, representing the additional path length induced by the 
winding (for a review see Scheidegger 1974). In our equations (43) and (45), considering 
t(L) to represent the porosity, the analogue of tortuosity is the variation of g,(Q) with 
lattice. However, g,(a) is a monotonically increasing function of Q, while there is no 
evident correlation between the tortuousness of flow paths and Q in the lattices shown 
in figure 10. We feel that the concept of tortuosity is relevant only to media with 
locally one-dimensional flow paths, and is not an appropriate description of flow in 
interconnected networks. 

k cc 0". (46) 

6.  Conclusions 
We have discussed creeping flow in a class of semi-regular network models of porous 

media. The principal new features of this work are as follows. 
(i) The inclusion of pores, or junctions between flow channels, in a network 

formalism. Previous network studies of this type have considered only collections 
of straight tubes. 

(ii) The applicability and utility of effective-medium theory has been stressed. The 
randomness in the flow-network elements may be averaged over in an almost analytic 
fashion. The validity of Darcy's law for even relatively small samples of materials 
with a strongly varying microscopic geometry follows from EMT. 

(iii) We have expressed the permeability of flow networks in a convenient explicit 
form (43), (45). For any network, k is given as a factor depending on the local topology 
and the microscopic size distribution and a factor depending on the global network 

Several further related problems are suggested by the present work. By using 
numerical techniques one can improve upon the approximations made in the pore-flow 
calculation of 3 2, and extend the calculations to pores of a less convenient shape and 
to pores in three dimensions. It would also be worth while to verify the EMT approxi- 
mation explicitly for truly random networks. While we have only treated networks 
that are statistically homogeneous and isotropic, many interesting porous media are 
not. It is quite straightforward to study inhomogeneity and anisotropy numerically, 

topology. 
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but the appropriate modifications of EMT ideas are not known. A further interesting 
extension is to the flow of several immiscible fluids in a porous medium. Here one must 
deal with capillary forces and time-dependent flows, but to the extent that one can 
employ a Washburn approximation (Washburn 1921 ; DussanV. 1979), the problem can 
still be formulated in linear-network form. We hope to report on some of these matters 
soon. 

I thank G. K. Batchelor, R. N. Chandler and E. J. Hinch for discussions, and K. 
Kaplin and T. J. Lasseter for assistance with the numerical computations. 
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